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Abstract — During the ongoing COVID-19 (Coronavirus) 

pandemic, it was determined that a simple and effective defense 

mechanism against the virus is wearing a face covering to prevent 

its spread between persons. Providing masks and collecting 

statistics on how many people effectively use them was a major 

hurdle in the battle against the disease. This project seeks to 

provide a solution by leveraging Artificial Intelligence to scan the 

area for both people wearing and not wearing masks, providing a 

mask to those not wearing one, and logging events for statistics 

tracking purposes. 
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I. INTRODUCTION  

The Coronavirus Prevention project is centered on safety and 
personal well-being of the general public by providing masks to 
those not wearing one, and providing a statistics logging server 
to keep track of how many people wear masks/don’t wear 
masks. An alert system additionally prompts the user that a mask 
is required to proceed, and to take a mask from the system. The 
Coronavirus Prevention system is a concept that stems from the 
popularity of Pixar’s Wall-E. The friendly looking robot can 
store items within its center compartment and scan its 
surrounding environment with the need of superficially complex 
internal or external design. The reason we chose Wall-E as the 
inspiration for our design is because Wall-E is cute. In the 
current time of chaos, having something cute sitting on the front 
door would be pleasant to look at, and encourage people to 
directly look at the camera giving us a better shot of their face. 

Our design of the Coronavirus Prevention system will 
simplify the design of Wall-E even further. Since our primary 
purpose is to hand out masks, then a single scan when the person 
first enters the building should be more than enough. Thus, we 
will make the robot stationary. This will help cut down on cost 
even further and save us much more time as we do not have to 
implement a navigation system. The system will also provide a 
button to the user. By pressing the button, the user will be able 
to manually open the center compartment and take a mask 
without having to wait for the image processing unit to process 
or in the case that there is a software failure. The visual 
processing capability will still be there. We hope to retain the 
cuteness of the machine even after removing some of the 
preference design’s features. 

II. MOTIVATION & GOAL 

A. Motivation 

SARS-CoV-2 of 2019, or simply COVID-19, is a strand of 
coronavirus that causes the COVID-19 pandemic that has been 
spreading quickly across the entire world since November of 
2019. As the virus was determined early on to be both extremely 
contagious and virulent, prevention mechanisms were explored 
by many agencies. The CDC recommends social distancing at 
6-feet apart as the easiest way to prevent the spread, though this 
is not always achievable in high traffic or dense areas. Another 
way to prevent the spread, according to the U.S. Center for 
Disease Control (CDC), is to wear a simple face covering, or 
mask [1]. The CDC mentions that wearing a mask is effective at 
protecting yourself and others around you, and that at any time 
in public a mask should be worn to prevent COVID-19 spread. 
Even though these studies are widespread and some show that 
83% of U.S. adults believe a face mask is effective in preventing 
spread [2], some surveys place the number of people not wearing 
face masks when in contact with others at a staggering 49% [2]. 

Another major thing we saw in our research of the COVID-
19 pandemic was that many of the statistics available are 
conducted as surveys. People are skewed and biased when self-
reporting, and surveys tend to suffer as a result of this. By 
providing real-world statistics based on how many people are 
wearing masks or not wearing masks, we can paint a much more 
accurate picture of how our response to the pandemic is going. 
These statistics may be very helpful, for example, to health 
experts and scientists trying to map the efficacy of mask wearing 
to real infection rates in the area. Using survey data for this 
example would create a skewed picture, and our system trumps 
comes out on top in usefulness. 

Based on the research speaking that most people do believe 
face masks are effective, though a large number do not wear 
them all the time when in contact with non-household members, 
along with the research behind automatic dispenser systems not 
being readily available, we felt we had to design a solution to 
the problem. At the same time one of the most popular trends in 
Computer Science and Engineering taking off is Artificial 
Intelligence. By leveraging a computer to determine who is 
wearing a mask and who is not, we can make accurate decisions 
in very little time (in our testing over 80% accuracy at 10 frames 
per second). 

B. Goal 

Based on our previously conducted research and motivation, 
our main goal is to use a computer to make determinations on 
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who is/isn’t wearing a mask, and subsequently automatically 
distribute a mask to those who need one to prevent the spread of 
COVID-19. A statistics tracking database will also run 
concurrently to provide scientists and health experts with data 
on health and behaviors of the general public. These experts may 
benefit greatly from identifying trends of certain areas and 
determine how well we are responding to the pandemic in 
general. Additionally, to make our machine accessible to as 
many people as possible, we must keep our costs low. 

III. COMPONENT REQUIREMENTS 

A project will not go anywhere without having a specific set 
of component requirements of both hardware and software for 
the developers to achieve. The requirements ensure that the final 
product meets or surpasses the outlined measurements and 
performance. These requirements not only outline the 
functionality of the Coronavirus Prevention system, but they 
also lay the foundation for the design and implementation of the 
machine. These are the standards in which to the final product is 
to be built upon. 

The purpose of the Hardware/Software requirements section 
below is to outline the specific, verifiable, and measurable 
outputs the product must achieve. At the bare minimum the 
finalized product must meet these requirements specified below 
to meet the intent of the project. These requirements will be 
verified as per the verification section in Testing And 
Evaluation. 

A. Hardware Requirements 

This hardware requirements section details what will need to 
be met in terms of hardware sign for the project. They are 
focused on and may include physical requirements or constraints 
but are not limited to these two. Figure 1 shows the image of our 
complete system. 

 

Figure 1: Coronavirus Prevention System Block Diagram 

1) Housing 

The first thing that someone will see when the look at the 
machine is likely to the outer body. In order to get someone to 

use the machine, the body must look non-intimidating, but 
rather, it must be as friendly looking, and as inviting as possible. 
However, since we are on a budget, we must carefully consider 
the build material, as well as the design of the housing itself. If 
we use high-end materials and design the housing to look 
sophisticated, the building cost would be off the roof. Thus, we 
opted for something a simple and cute looking design that can 
be done using cheap materials. This is where our design 
inspiration, Pixar’s Wall-E, comes in. Pixar was able to design 
Wall-E to be so simplistic, yet at the same time, adorable. We 
want to capitalize on this simplicity for our robot to cut down 
the housing cost as much as possible.  

Among all the materials that we can use like wood, 
aluminum, or molded hard plastic, we have decided to use 1/8” 
thick acrylic sheets as the body. Although acrylic does not have 
to elegant look of wood, nor is it as malleable as aluminum or 
hard plastic, it is much easier for beginners to work with than 
the alternatives. All we need are a drill and a saw. We will cut 
each panel separately, sand down the edges, and stick them 
together using hot glue.  

The housing body must be large enough to accommodate all 
the hardware, as well as some masks. The hardware inside the 
body will be the Jetson Nano, PCB, and motor. Other 
components like the ultrasonic sensor and the camera module 
will be hanged on the outside. From a rough estimation, we 
found that a dimension of 5in x 5in x 5in would be sufficient to 
house all the components. However, to make it easier to mount 
the components and manage cables, we have decided to double 
all of the dimension to make it more spacious inside. There will 
be a door at the front of the robot that is controlled by a motor to 
make it easy for the user to reach in a fetch a mask. The initial 
design of the door is modelled after the old garage door that is 
lifted with a string-pulling motor. However, we have found that 
it would be easier for the motor to rotate on the vertical axis and 
open the door to the side than to open the door upward, so we 
have adjusted the design and mounted the door’s hinge to the 
side. 

2) Motors 

The motor in the coronavirus prevention system is just a 
cherry on top of the sweet pie. It is not required to get the system 
to be functional, however, having a motor adds to the 
convenience of the machine as a whole. The motor’s purpose is 
to open and close the front door of the robot’s body. Because 
people are weary of the pandemic, they will not feel comfortable 
having to push the door in to fetch a mask. This is why we want 
to make the door to be automatic such that when our machine 
learning model have determined that the person is not wearing a 
mask, the microcontroller will turn on the motor to open the door 
for the person to reach in a fetch a mask. 

Initially, we had wanted to use a cheap DC brushless motor 
to pull the string that is connected to the door. However, after 
the initial testing, we have discovered that the DC motor is not 
at all consistent. Given the same activation voltage, same PWM 
settings, and same active period, the number of rotations in each 
active period is slightly different from each other. This makes it 
so that sometimes the door is not shut all the way, or sometimes, 
the door is only half-opened. The reason behind the 
inconsistency is because the rotation is generated by charging 
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the magnets. Sometime, the magnets are not charged enough, 
causing the motor to not spin enough. Some other times, the 
magnets get charged too quickly and spin the motor too fast; 
even after the current is cut off from the motor, the angular 
momentum continues to spin the motor for a bit longer.  

This is where the servo motor comes in. Servomotor is a 
specialized class of DC motors that is capable of enabling 
precise control of the angular velocity and position of the shaft. 
Servo motor’s limitation over a typical DC motor is that it 
cannot rotate infinitely. Most servo motors have a 180-degree 
rotational axis. However, 180-degree is enough for our 
application. Having a limited spinning range decreases the risk 
of having the motor spinning too much. A servo motor box is 
just a gear box. Multiple gears are cascaded together to make it 
so that the rotatory torque is high. With high torque, the shaft 
would still be in position even when the motor is off. This makes 
it ideal for door opening and closing. We have decided to use 
the Tower Pro SG90 servo motor for its small size, relatively 
high torque, and a cheap price. 

3) Sensors and Buttons 

For this project, there will be 2 sensors and 1 button that will 
be implemented. Of those, only 1 sensor is required to 
accomplish the task determined initially. The rest are 
superfluous add-ons that aim to improve the quality-of-life for 
the users. When take out the one of the sensors and the button, 
the machine should still be functioning correctly. However, the 
codes will be more complex, and the wait time will potentially 
be longer. The required sensor for this project is the image 
sensor (photo camera module). Without out it, the tasks of facial 
detection and mask recognition would not be realizable. The 
quality-of-life enhancements to the machine are the proximity 
sensor and the override button. 

For the proximity sensor, we have decided to go with the 
HC-SR04 ultrasonic sensor. We did not go with the awesome 
range of LiDAR or Infrared but chose a relatively short-range 
ultrasonic sensor because that is all we need. We do not need 
long distance tracking, but rather, we need high short-range 
accuracy. While the accuracy of LiDAR does not lack behind 
that of the ultrasonic sensor, depending on the LiDAR’s 
wavelength, it could be harmful to the health of the users. We 
do not want to have the risk of having a LiDAR sensor 
functioning out of specification and cause harm to its users. The 
LiDAR sensors that are available on the consumer’s markets 
simply do not go through the strict quality control procedures as 
those made for large corporations. Also, cost is also a factor that 
needs to be taken into consideration. Since we are on a budget, 
we cannot afford a high-quality LiDAR sensor. As for those 
cheaply made Chinese products, we just do not know if they 
function the way they say they do or if they would just work for 
one day, and the next they, the frequency increases drastically. 
We have no way of measuring light waves currently, so the 
product needs to be from a reputable manufacturer that we can 
trust. Unlike LiDAR, ultrasonic sensors are available from many 
US-based reputable manufactures. They are also much cheaper 
in comparison. We did not choose the infrared sensor because 
we do not know the lighting conditions of the place where the 
machine is going to be. If the room has too many infrared signals 
from sources like sunlight, lightbulbs or computers, the infrared 

sensor will experience constant interference and the result will 
not be at all accurate.  

At first glance, the ultrasonic sensor may not be necessary in 
the system. However, it is a way that we can save on energy 
consumption of the system. If there are no proximity sensors, the 
Jetson Nano-controlled camera will have to continuously be 
taking pictures, and the Jetson Nano will have to continuously 
analyze the pictures to detect if there is anyone in front of the 
machine. Compared to the microcontroller and the proximity 
sensor, the Jetson Nano and camera use much more power. To 
conserve power, while the proximity sensor has not detected 
anyone, the Jetson Nano will be in sleep mode. Once there is 
someone in front of the machine, the ultrasonic sensor will send 
an interrupt signal to the microcontroller. The microcontroller 
will send a message to the Jetson Nano via UART, subsequently 
causing an interrupt signal to occur in the Jetson Nano, waking 
it from sleep. 

As stated previously, since our goal is facial recognition, we 
will need to be able to capture high resolution images of the face 
of a person. To achieve that goal, for our photo camera, we have 
gone with the IMX219 camera module, with the resolution of 
3280 x 2464. To put that into perspective, the resolution of a 4k 
camera is 3840 x 2160. The horizontal length of our picture is a 
bit shorter than 4k, but in exchange, our image is taller. The 
reason that we have gone with a development camera module 
rather than a full-blown camera is the cost. A full-blown camera 
is around 20x more expensive than a comparable camera 
module. The difference in cost is stemmed from the inclusion of 
an onboard image preprocessor. For our application, we do not 
need the image to be sharpened before being processed by the 
AI, so a camera module alone is more than enough.  

Lastly, let us talk about the use of a push button in the 
system. The button is just the typical single push, single throw 
button. This is added as a failsafe option in case someone or 
something is blocking the ultrasonic sensor, preventing it from 
detecting an approaching object. This also helps in case the robot 
is mounted in high places and the person is too short to be 
detected by the ultrasonic sensor. Whatever the case may be, all 
the user has to do is to push the button to override the ultrasonic 
sensor detection. After pressing the button, the Jetson Nano will 
be turned on to do the AI processing sequence like usual. The 
reason we use the button to override the ultrasonic sensor and 
not the jetson nano is because the IMX219 camera module has 
a much wider field of view than the ultrasonic sensor, so the 
chance of it not being able to capture an image that does not 
contain a person is low. 

4) Microcontroller 

The microcontroller that we are using for this project is the 
MSP430G2553. The MSP430G2553 ports a 16-bit processor 
with 16KB of flash memory, 2 16-bit timers with 24 GPIO lines, 
3 of which are PWM capable, and it supports basic 
communication protocols like UART, SPI, and I2C. Rather than 
using a G2ET development kit for the MSP, we minimized the 
footprint by putting the MSP430G2553 microcontroller chip on 
the same PCB as the power delivery system. We do not need the 
fancy features provided by the development board like easy 
computer connection with the micro-USB port, nor do we need 
the 8-segments LCD screen. We do not even need a reset button 
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for our current project. We only need direct access to the pins 
for the peripheral control and to set up the buttons. Also, since 
the interior of the robot is relatively small, putting another board 
into the body would take up too much space. We believe doing 
so is the right choice as the size of the microcontroller itself is 
only about 1/100th of the size of the entire board. 

As for the port and pin connectivity to and from the 
MSP430G2553 microcontroller, here is how it works. DVCC is 
the power source of the chip, so it is connected to the 3.3V rail 
of the power supply. Obviously, another terminal is needed to 
complete the circuit; so, we then connect the DVSS to the 
ground terminal of the power supply. Because the reset pin is 
active low, we must, at all time, bridge the reset pin with DVCC 
via a 47k resistor to hold it high. Without hooking it up the 
voltage source, the reset pin will float between high and low and 
constantly reset the microcontroller. This phenomenon is similar 
to a boot loop many people have experienced with the personal 
computer. The push button will be configured to bit 3 of port 1 
of the microcontroller. As stated in the motor section, the motor 
will be hooked up to the motor driver, then the motor driver will 
be linked with the microcontroller via P2.0, P2.1, and P2.3. 
Finally, the buzzer will be linked to P2.4 and P2.5. 

According to Texas Instruments’ datasheet, the 
MSP430G2553 consumes no more than 1.4mW even under 
heavy load. MSP430G2553 takes in 3.3V as the operating 
voltage. Under heavy load, the input current is measured to be 
roughly 400uA, which is within expectation. What more, under 
low-power mode, the power consumption dropped drastically. 
With low-power mode 3, the amount of current it needs dropped 
to roughly 2uA, making the required power decreased to 6.6uW. 
Since the MSP430G2553 does not need that much power to 
operate, it can be powered very easily. Since our 3.3V rail of the 
power delivery can deliver up to 5W of power, it should be more 
than enough to power not just one, but multiple MSP430G2553 
at once. 

5) Image Processor 

The image processor used in this design is ultimately chosen 
to be the NVIDIA Jetson Nano. The decision behind choosing a 
graphics/image processor development board in this case was 
simple due to both the specifications of the Nano being far above 
its competitors in the same price range and abundant support 
from NVIDIA for deploying AI applications. Among the 
abundant support for the Jetson platform is a face mask detection 
flow that has already been fleshed out officially by NVIDIA as 
an example design and the methodology can be easily found 
online. 

The main reason for choosing the Jetson Nano is that it has 
the strongest GPU among the all the processors in the similar 
price range – a 128 CUDA core NVIDIA Maxwell-series. 
Essentially, since we have an artificial neural network at the 
heart of our processing that consists of many simple 
multiplication and addition operations needed to be done in 
parallel, a CPU would not be very efficient at doing this since it 
is both inherently sequential and has a low number of cores. 
What a neural network needs for good performance are many 
“dumb” cores since we do not care about concepts such as cache 
or a complex ISA provided by CPUs since each node in the 
neural network is doing just simple arithmetic operations. 

Something that needs to be realized as well is that we need to 
actually be able to sufficiently utilize the GPU available. In 
terms of support, the Nano has a massive platform provided by 
NVIDIA for CUDA core drivers, making sure we get the 
maximum performance possible out of the GPU, so this is not a 
problem since it is built into their deployment SDK. 

Power consumption was not a major reason for choosing the 
Jetson Nano, however we must still take it into account when 
designing the hardware. The Jetson Nano requires a steady 5v/2a 
DC power source in order to run at its peak 10W power usage 
for optimal performance. This is not taking into consideration 
the carrier board or attached peripherals, which may end up 
taking more power. NVIDIA’s recommendation is a 5v/4a DC 
source to provide a stable voltage rail with no droops below 
4.75V to prevent brownouts. This is a hard requirement due to 
the fact that we need to be able to run the Nano as hard as 
possible since we cannot afford any performance losses in our 
AI algorithm. 

There are three different ways to power the board. The 
micro-USB route has been seen to be very unreliable in testing 
and will not be used. The 2.1mm barrel jack connector can 
supply up to 5v/4a and is a possible choice, however the simplest 
way to power the nano is through the 5v VDC headers (pins 2, 
4) shown in Figure 38. They may take up to 2.5A per pin, 
however we will not require the full 5A supply since the Nano 
itself takes up 2A, and the only peripheral connected is the 
Camera module which should in no way take up more than an 
entire amp of power. Therefore, a loose requirement is 5V/3A 
connected to pins 2, 4 on the header. 

6) Power Delivery 

For power delivery for this project, we are going to use an 
external power brick (AC-DC converter) which converts from 
120VAC to 12VDC, then, our PCB will implement 2 rails with 
voltage regulators that turn the input 12VDC to 5VDC and 
3.3VDC respectively in order to run motor driver, 
MSP430G2553, and the Jetson Nano.  

Now, let us walk through the entire circuit to see how it 
operates. First, the input signal is generally in the range of 
120V(rms), 60Hz AC signal that comes out from United States’ 
wall outlets. The input signal is connected directly to the primary 
side of step-down the transformer (integrated into the power 
brick). The step-down transformer that we used in this circuit 
that converts from 120VAC to 12VDC. To regulate the output 
voltages, we initially used the LM7805 and 
NCV4274CDT33RKG linear regulators. We later found out 
from our professor that the LM78XX parts are extremely 
inefficient in voltage conversion. The efficiency rating of the 
78XX parts is only around 50%. If we have all the energy in the 
world, such low efficiency would not be a problem. However, 
the world’s electrical energy is limited, so we do not have the 
leisure to waste energy. The current design’s efficiency is 80%+, 
which is a huge up lift from the 50% efficiency. The 12V output 
from the DC power brick will be taken in by the LM25085A 
regulator to be converted to 5V. The 3.3V rail runs parallel to 
the 5V rail, so we will run the 12V output voltage from the 
power brick into the TPS563249 regulator to convert it into 
3.3V. The use of each of the output voltage is the same as 
mentioned before. The only difference between the old set up 
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and the new one is that the new one is more stable and more 
efficient. The efficiency number and the design of the new 
circuit is taken directly from the TI’s WEBENCH power 
designer tool. 

7) PCB Design 

The obvious step immediately after designing the multi-rail 
power delivery system is to design the PCB. There are many free 
and paid options that can be used to design a PCB. Due to our 
inexperience and lack of expertise, we will be using Autodesk 
Eagle to design our PCB. We chose Eagle because it is the 
software that we have some experience with, and it is also that 
the software that is widely used by our professors at the 
University of Central Florida.  

After designing comes the manufacturing process. There are 
many PCB manufactures that we can use, from those that are 
based in the US to those that are based overseas. To save on cost, 
the obvious option is to go with a Chinese manufacture. Initially, 
we chose PCBWay to manufacture and assemble our PCB. 
However, after a 2-months delay from Lunar New Year, the 
board came with manufacturing defects and many included 
components were dead-on-arrival. We got the board to be 
remanufactured, this time by the more reputable JLCPCB. After 
the board arrived, the sent the board, alongside the components 
to The Quality Manufacturing Services at Lake Mary (QMS), a 
manufacture with existing partnership with UCF, to be 
assembled. The board is a simple 2-layer PCB with size of 
100mm x 90mm in size and with 31 unique components. Since 
the component count is not high, QMS agreed to assemble the 
components for us for free. An image of our PCB presented in 
Figure 2. 

 

Figure 2: PCB 

B. Software Requirements 

The below subsections detail our design of the software 
components of the robot. For obvious reasons, our project 
cannot be solely hardware-based. We need to have a seamless 
combination between the hardware and software to make the 
user’s experience as stress-free as possible. Aside from listing 
the software components, we will also go over the purpose of 
the part in the grand scheme of functionality of the system. 

1) Machine Learning Model Training and Pruning 

The training of our machine learning model proved to be the 
most complex part out of designing the system. In order to create 
an effective model, we decided to follow NVIDIA’s Transfer 
Learning Toolkit process due to its popularity in the AI 
community, and proven performance. 

Training a machine learning model is a complex process. 
Thankfully NVIDIA has standardized their transfer learning 
process. The sub-sections below detail the process we went 
through to train our model. 

“Transfer Learning” is the method of machine learning 
which uses the knowledge in an already trained model and 
applies it onto a different, but related problem. The idea of 
transfer learning is reusing the model developed for a certain 
task as the initial model for a related task which does not have 
sufficient data. Instead of starting the process by collecting data, 
the users can begin with the model that “solves” a related task, 
which is extremely beneficial in saving a huge amount of 
training time due to the fact that it uses a previously trained and 
specialized model. 

Transfer learning is useful when we do not have enough data 
for a new domain and there is already a pre-existing data pool 
that can be reused for the new problem. The NVIDIA Transfer 
Learning Tool Kit provides pre-trained models that can be re-
trained to in order to achieve any arbitrary model. Also, TLT 
does not require high-level understanding in deep learning, so it 
is easy to use that make our own custom model for our project. 
The flow we will follow is shown in Figure 3. 

 

Figure 3: Transfer Learning Toolkit (TLT) Flow 

To quickly get up to speed on training our model, we first 
had to configure our environment to perform the actual training. 
Since a GPU is more or less required for training, we used a 
laptop with an NVIDIA GTX 1060. To configure the Linux 
environment, we used Windows 10’s Windows Subsystem for 
Linux 2 (WSL 2). This second iteration of WSL allows for use 
of the GPU inside the Linux subsystem. Inside this Linux 
subsystem we ran the nvidia:tlt-streamanalytics docker 
container for access to a standardized TLT environment. 

 The model training process is as follows: First, we 
download the dataset of faces with mask and without mask and 
convert them into KITTI format using the data2kitti.py script 
given, and then into TFRecords format for the underlying 
TensorFlow API that TLT runs on top of. The TFRecords 
conversion was done using the tlt-dataset-convert executable 
built into the environment. We also download the pretrained 
model from NGC (NVIDIA GPU Cloud). Specifically, we will 
use the DetectNet_v2 with the ResNet-18 for accuracy and 
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efficiency. After that, the quantized TLT deep learning model is 
deployed with DeepStream SDK to identify faces with mask or 
no mask. By using NVIDIA TLT and NVIDIA DeepStream 
SDK, it saves a significant amount of time in training as well as 
allows us to achieve high accuracy performance in real-time. 

The main step in this software flow is the actual TLT training 
done inside of the Jupyter Notebook provided by NVIDIA, 
inside of the TLT docker container, inside of WSL 2. Once our 
labeled images are converted to TFRecords format and we have 
the pre-trained DetectNet_v2 model from NGC, we can now 
continue to training. 

The first step in training is re-configuring the 
detectnet_v2_train_resnet18_kitti.txt config file in the specs dir 
which controls many parameters for the training such as paths to 
files, validation split, and many others that have been pre-
configured by NVIDIA. The ones that must be reconfigured are 
the image width, height, fold number (for validation split of 
images), and other training parameters such as number of 
epochs, batch size, etc. along with the paths to the training 
TFRecords. 

We set our parameters to 960x544 (the original 
DetectNet_v2 model resolution), 120 epochs, and a batch size of 
12. Depending on the amount of both system RAM and GPU 
DRAM is available we must lower the batch size parameter. The 
batch size defines how many samples we work through during 
the current epoch before we update the model parameters. A 
higher batch size implies better training for the model at the cost 
of taking more time and more memory since we are performing 
operations on a larger subset of data. In training, we found that 
a batch size of 12 was the most optimal setting – the highest we 
could go with acceptable training speed without running into 
memory starvation. 

After the parameters are set, we begin the training by using 
the tlt-train executable. Our final accuracy for the unpruned 
model ends up at 82% and 84% for mask or no mask inference, 
respectively. This is close to NVIDIA’s calculated numbers of 
~85% for each, though less likely due to a different split of 
training data, less epochs, smaller batch size, etc. Had we run 
training for more epochs on better hardware with larger batch 
size this accuracy would likely increase, although non-
deterministically since training varies on every run. 

 The next stage in the TLT flow is the pruning stage, 
followed by re-training. From a high-level pruning is known as 
“Data compression” technique that takes nodes in the network 
that have a very small impact on the overall decision of the 
output and strips them away from the model. This method helps 
the model to achieve better solution, reduces the complexity of 
the model as well as improving the accuracy by decreasing 
overfitting the model. Also, this greatly reduces inference time 
and is extremely valuable to do in our case since we will be 
running on relatively weak hardware (Jetson Nano), and can use 
whatever performance increases we can get within reason. 
Theoretically, this technique will only reduce the size of 
decision trees without increasing errors. However, in this 
specific case, removing nodes from our neural network, we lose 
the accuracy since some may have a ripple effect through the 
network. An acceptable loss in pruning for our application is an 
arbitrary 5% loss. 

To actually prune the model, we run the tlt-prune with a “-
pth #” option setting that acts as a threshold value and is a 
floating-point number between 0 and 1. A larger number closer 
to 1 prune more of the network while a smaller number near 0 
leaves more intact. It’s obvious that the higher the value is, the 
more accuracy we will lose since more of the network will be 
stripped away, so it ends up being a balancing act between 
performance gain and accuracy loss.  

Additionally, due to the fact that we will be losing accuracy 
upon doing this it is necessary that we re-train the network once 
pruning finishes, and that we re-evaluate the network to see if 
we pruned too much. If our accuracy suffers too much (more 
than the arbitrary 5% stated before), we will have to go back and 
prune less, and re-train once again. Thus, next we prune the 
model with a starting value of 0.4 and re-evaluate. The re-
evaluated model accuracy is shown in the figure below and is 
satisfactory at ~83% for both mask and no mask. Later on, we 
will deploy our model to the Jetson Nano, and if inference 
performance (frames per second) is satisfactory, we are done. 
However, if either accuracy or inference performance is lacking 
too much, we may re-visit the pruning and modify the threshold 
value to modify our tradeoff in this area. 

2) Deploying Machine Learning Model 

NVIDIA further provides a framework for deploying custom 
models that utilize the TLT flow called Deepstream SDK. We 
chose to use NVIDIA’s deployment platform due to having 
good community support, and it allows us to follow their 
example designs. Since we used TLT, deployment is as 
straightforward as modifying the example designs. 

We chose to follow the Deepstream Python example 
applications for deploying our model due to familiarity with 
Python in UCF’s Artificial Intelligence course. We first had to 
modify the Primary GPU Inference Engine (PGIE) 
configuration to point to our custom model, and set all the 
relevant parameters to our model (image height, width, 
confidence threshold). 

Once the configuration was set, we modified the example 
Python application. The GStreamer pipeline is first generated by 
the NVIDIA provided code. Next, we wait inside of a loop 
forever until we receive serial data from the MCU in “sleep 
mode”. If the serial data received is an “S” ASCII character, we 
have our start condition and begin playing the pipeline. A set 
number of frames are generated by the camera (128), and at the 
end of the 128 frames we record the metadata found by the AI – 
we check here for people seen wearing masks or no masks. 
Statistics logging then occurs with the database, and we inform 
the MCU if we have seen someone without a mask. The loop 
then restarts. An image of the mask recognition demo is 
presented in Figure 4 below. 
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Figure 4: Real Time Mask Test 

The actual internals of the Deepstream SDK uses a 
GStreamer pipeline setup to transfer data between elements’ 
sources and sinks. These elements may perform video or audio 
decoding, image transformation, inference, and many other 
functions. To actually “run” the AI we need to first set up a 
pipeline, which is quick to pick up since NVIDIA provides many 
examples. To get any valuable data out of the AI, a probe is 
inserted at the end of the onscreen display element. Inside of this 
probe we extract valuable metadata from the buffer object 
including frame number, number of each element seen in the 
image (masks/no-masks), and interact with our database. The 
deployment flow is shown in Figure 5. 

 

Figure 5: Jetson Nano SW Flow 

3) Database Communication 

Our database system is based on the LAMP (Linux, Apache, 
MySQL, Python) stack. Linux, MySQL, Python are such 
powerful platform that contributes essential capabilities to the 
stack as well as providing the sufficient requirements for 
database system for our mask detection task. 

Linux (The operating system): Serve as the first layer for this 
stack model. Linux is free and open-source operating system, 
which provide flexibilities and configuration options to run our 
server.  

Apache (The web server): Since we are planning to host the 
database locally, we do not use the Apache to deliver the website 
on the internet.  

MySQL (The database): MySQL is known as open-source 
relational database management system for storing information. 
This will be the second layer for our model, that will store the 
data, and deliver the information as requested. 

Python (The programming language): We use Python as our 
primary scripting language to create dynamic database server.  

This database system will have three main layers as 
mentioned above, Linux sets the foundation for the stack model, 
following by MySQL and Python. Python communicates with 
MySQL for fetching or storing data referenced in the code. We 
will manage database directly using SQL commands instead of 
using a web server. This stack model is efficient enough to 
handle the changing of data depends on date, time and user IDs. 

The database will automatically generate a unique number 
each time a person comes through the mask detection system 
with a unique identifier to ensure the data recorded is unique. 
After a primary key is created (null values will be rejected), the 
new data associated with the key guarantees two persons will 
never have same value and allows us to parse data within the 
table quickly. 

After 128 frames captured the person coming toward the 
camera within distance, every person in the video will be labeled 
as “Mask” or “No Mask”, which will be recorded in the 
metadata file. This data file is imported to MySQL database with 
“PersonID” will be the primary key to distinguish with the 
preexisting data. “PersonID” is “AUTO_INCREMENT”, which 
allows us to generate unique number automatically when a new 
data record is added into the table, following by “Mask”, will be 
stored in Boolean type: Mask: 1 and No-mask: 0. To store date 
and time information, we use SQL datetime type in order to 
define specific time a person has experience mask detection 
system.  

IV. TESTING AND EVALUATION 

A. Hardware Testing 

With some exceptions, the majority of the hardware testing 
is accomplished by plugging in the PCB and measure the voltage 
and current at each of the lead to ensure the output is as expected. 
The testing is presented in the Table 1. 
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B. Software Testing 

The testing for the Jetson Nano is shown in the tables below. 
The MSP430 software is collaterally tested in the hardware 
section. 

 

 

 

 

 

V. CONCLUSION 

In conclusion, Coronavirus Prevention System is AI based, 
face mask detection, that uses streaming data from the camera, 
combined with machine learning techniques to detect a person 
without a mask. The team was able to meet all specifications that 
are required for this project. Throughout testing and integration, 
we noticed that sometimes the door is open slower than usual, 
but this would be an easy fix.  

Overall, the team learned many valuable skills that not only 
for individual growth but also the idea that everyone’s 
contribution can lead to something that is socially beneficial, 
during the current pandemic COVID-19. We believe this project 
would be a great way to demonstrate our skills and knowledge 
that we have learned from coursework at UCF including 
hardware design and software design. 
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