
1

Coronavirus Prevention System

Emanuel Cicortas

Department of Engineering and

Computer Science

University of Central Florida

Orlando, Florida

t3sla@knights.ucf.edu

Dat Nguyen

Department of Engineering and

Computer Science

University of Central Florida

Orlando, Florida

dat.npt@knights.ucf.edu

Ha Tran

Department of Engineering and

Computer Science

University of Central Florida

Orlando, Florida

htran49@knights.ucf.edu

Phuong Anh Vu

Department of Engineering and

Computer Science

University of Central Florida

Orlando, Florida

vpa.991997@knights.ucf.edu

Abstract — During the ongoing COVID-19 (Coronavirus)

pandemic, it was determined that a simple and effective defense

mechanism against the virus is wearing a face covering to prevent

its spread between persons. Providing masks and collecting

statistics on how many people effectively use them was a major

hurdle in the battle against the disease. This project seeks to

provide a solution by leveraging Artificial Intelligence to scan the

area for both people wearing and not wearing masks, providing a

mask to those not wearing one, and logging events for statistics

tracking purposes.

Keywords—COVID-19, machine learning, computer vision,

mask detection, facial detection, deep learning

I. INTRODUCTION

The Coronavirus Prevention project is centered on safety and
personal well-being of the general public by providing masks to
those not wearing one, and providing a statistics logging server
to keep track of how many people wear masks/don’t wear
masks. An alert system additionally prompts the user that a mask
is required to proceed, and to take a mask from the system. The
Coronavirus Prevention system is a concept that stems from the
popularity of Pixar’s Wall-E. The friendly looking robot can
store items within its center compartment and scan its
surrounding environment with the need of superficially complex
internal or external design. The reason we chose Wall-E as the
inspiration for our design is because Wall-E is cute. In the
current time of chaos, having something cute sitting on the front
door would be pleasant to look at, and encourage people to
directly look at the camera giving us a better shot of their face.

Our design of the Coronavirus Prevention system will
simplify the design of Wall-E even further. Since our primary
purpose is to hand out masks, then a single scan when the person
first enters the building should be more than enough. Thus, we
will make the robot stationary. This will help cut down on cost
even further and save us much more time as we do not have to
implement a navigation system. The system will also provide a
button to the user. By pressing the button, the user will be able
to manually open the center compartment and take a mask
without having to wait for the image processing unit to process
or in the case that there is a software failure. The visual
processing capability will still be there. We hope to retain the
cuteness of the machine even after removing some of the
preference design’s features.

II. MOTIVATION & GOAL

A. Motivation

SARS-CoV-2 of 2019, or simply COVID-19, is a strand of
coronavirus that causes the COVID-19 pandemic that has been
spreading quickly across the entire world since November of
2019. As the virus was determined early on to be both extremely
contagious and virulent, prevention mechanisms were explored
by many agencies. The CDC recommends social distancing at
6-feet apart as the easiest way to prevent the spread, though this
is not always achievable in high traffic or dense areas. Another
way to prevent the spread, according to the U.S. Center for
Disease Control (CDC), is to wear a simple face covering, or
mask [1]. The CDC mentions that wearing a mask is effective at
protecting yourself and others around you, and that at any time
in public a mask should be worn to prevent COVID-19 spread.
Even though these studies are widespread and some show that
83% of U.S. adults believe a face mask is effective in preventing
spread [2], some surveys place the number of people not wearing
face masks when in contact with others at a staggering 49% [2].

Another major thing we saw in our research of the COVID-
19 pandemic was that many of the statistics available are
conducted as surveys. People are skewed and biased when self-
reporting, and surveys tend to suffer as a result of this. By
providing real-world statistics based on how many people are
wearing masks or not wearing masks, we can paint a much more
accurate picture of how our response to the pandemic is going.
These statistics may be very helpful, for example, to health
experts and scientists trying to map the efficacy of mask wearing
to real infection rates in the area. Using survey data for this
example would create a skewed picture, and our system trumps
comes out on top in usefulness.

Based on the research speaking that most people do believe
face masks are effective, though a large number do not wear
them all the time when in contact with non-household members,
along with the research behind automatic dispenser systems not
being readily available, we felt we had to design a solution to
the problem. At the same time one of the most popular trends in
Computer Science and Engineering taking off is Artificial
Intelligence. By leveraging a computer to determine who is
wearing a mask and who is not, we can make accurate decisions
in very little time (in our testing over 80% accuracy at 10 frames
per second).

B. Goal

Based on our previously conducted research and motivation,
our main goal is to use a computer to make determinations on

mailto:t3sla@knights.ucf.edu
mailto:dat.npt@knights.ucf.edu
mailto:htran49@knights.ucf.edu
mailto:vpa.991997@knights.ucf.edu

2

who is/isn’t wearing a mask, and subsequently automatically
distribute a mask to those who need one to prevent the spread of
COVID-19. A statistics tracking database will also run
concurrently to provide scientists and health experts with data
on health and behaviors of the general public. These experts may
benefit greatly from identifying trends of certain areas and
determine how well we are responding to the pandemic in
general. Additionally, to make our machine accessible to as
many people as possible, we must keep our costs low.

III. COMPONENT REQUIREMENTS

A project will not go anywhere without having a specific set
of component requirements of both hardware and software for
the developers to achieve. The requirements ensure that the final
product meets or surpasses the outlined measurements and
performance. These requirements not only outline the
functionality of the Coronavirus Prevention system, but they
also lay the foundation for the design and implementation of the
machine. These are the standards in which to the final product is
to be built upon.

The purpose of the Hardware/Software requirements section
below is to outline the specific, verifiable, and measurable
outputs the product must achieve. At the bare minimum the
finalized product must meet these requirements specified below
to meet the intent of the project. These requirements will be
verified as per the verification section in Testing And
Evaluation.

A. Hardware Requirements

This hardware requirements section details what will need to
be met in terms of hardware sign for the project. They are
focused on and may include physical requirements or constraints
but are not limited to these two. Figure 1 shows the image of our
complete system.

Figure 1: Coronavirus Prevention System Block Diagram

1) Housing

The first thing that someone will see when the look at the
machine is likely to the outer body. In order to get someone to

use the machine, the body must look non-intimidating, but
rather, it must be as friendly looking, and as inviting as possible.
However, since we are on a budget, we must carefully consider
the build material, as well as the design of the housing itself. If
we use high-end materials and design the housing to look
sophisticated, the building cost would be off the roof. Thus, we
opted for something a simple and cute looking design that can
be done using cheap materials. This is where our design
inspiration, Pixar’s Wall-E, comes in. Pixar was able to design
Wall-E to be so simplistic, yet at the same time, adorable. We
want to capitalize on this simplicity for our robot to cut down
the housing cost as much as possible.

Among all the materials that we can use like wood,
aluminum, or molded hard plastic, we have decided to use 1/8”
thick acrylic sheets as the body. Although acrylic does not have
to elegant look of wood, nor is it as malleable as aluminum or
hard plastic, it is much easier for beginners to work with than
the alternatives. All we need are a drill and a saw. We will cut
each panel separately, sand down the edges, and stick them
together using hot glue.

The housing body must be large enough to accommodate all
the hardware, as well as some masks. The hardware inside the
body will be the Jetson Nano, PCB, and motor. Other
components like the ultrasonic sensor and the camera module
will be hanged on the outside. From a rough estimation, we
found that a dimension of 5in x 5in x 5in would be sufficient to
house all the components. However, to make it easier to mount
the components and manage cables, we have decided to double
all of the dimension to make it more spacious inside. There will
be a door at the front of the robot that is controlled by a motor to
make it easy for the user to reach in a fetch a mask. The initial
design of the door is modelled after the old garage door that is
lifted with a string-pulling motor. However, we have found that
it would be easier for the motor to rotate on the vertical axis and
open the door to the side than to open the door upward, so we
have adjusted the design and mounted the door’s hinge to the
side.

2) Motors

The motor in the coronavirus prevention system is just a
cherry on top of the sweet pie. It is not required to get the system
to be functional, however, having a motor adds to the
convenience of the machine as a whole. The motor’s purpose is
to open and close the front door of the robot’s body. Because
people are weary of the pandemic, they will not feel comfortable
having to push the door in to fetch a mask. This is why we want
to make the door to be automatic such that when our machine
learning model have determined that the person is not wearing a
mask, the microcontroller will turn on the motor to open the door
for the person to reach in a fetch a mask.

Initially, we had wanted to use a cheap DC brushless motor
to pull the string that is connected to the door. However, after
the initial testing, we have discovered that the DC motor is not
at all consistent. Given the same activation voltage, same PWM
settings, and same active period, the number of rotations in each
active period is slightly different from each other. This makes it
so that sometimes the door is not shut all the way, or sometimes,
the door is only half-opened. The reason behind the
inconsistency is because the rotation is generated by charging

3

the magnets. Sometime, the magnets are not charged enough,
causing the motor to not spin enough. Some other times, the
magnets get charged too quickly and spin the motor too fast;
even after the current is cut off from the motor, the angular
momentum continues to spin the motor for a bit longer.

This is where the servo motor comes in. Servomotor is a
specialized class of DC motors that is capable of enabling
precise control of the angular velocity and position of the shaft.
Servo motor’s limitation over a typical DC motor is that it
cannot rotate infinitely. Most servo motors have a 180-degree
rotational axis. However, 180-degree is enough for our
application. Having a limited spinning range decreases the risk
of having the motor spinning too much. A servo motor box is
just a gear box. Multiple gears are cascaded together to make it
so that the rotatory torque is high. With high torque, the shaft
would still be in position even when the motor is off. This makes
it ideal for door opening and closing. We have decided to use
the Tower Pro SG90 servo motor for its small size, relatively
high torque, and a cheap price.

3) Sensors and Buttons

For this project, there will be 2 sensors and 1 button that will
be implemented. Of those, only 1 sensor is required to
accomplish the task determined initially. The rest are
superfluous add-ons that aim to improve the quality-of-life for
the users. When take out the one of the sensors and the button,
the machine should still be functioning correctly. However, the
codes will be more complex, and the wait time will potentially
be longer. The required sensor for this project is the image
sensor (photo camera module). Without out it, the tasks of facial
detection and mask recognition would not be realizable. The
quality-of-life enhancements to the machine are the proximity
sensor and the override button.

For the proximity sensor, we have decided to go with the
HC-SR04 ultrasonic sensor. We did not go with the awesome
range of LiDAR or Infrared but chose a relatively short-range
ultrasonic sensor because that is all we need. We do not need
long distance tracking, but rather, we need high short-range
accuracy. While the accuracy of LiDAR does not lack behind
that of the ultrasonic sensor, depending on the LiDAR’s
wavelength, it could be harmful to the health of the users. We
do not want to have the risk of having a LiDAR sensor
functioning out of specification and cause harm to its users. The
LiDAR sensors that are available on the consumer’s markets
simply do not go through the strict quality control procedures as
those made for large corporations. Also, cost is also a factor that
needs to be taken into consideration. Since we are on a budget,
we cannot afford a high-quality LiDAR sensor. As for those
cheaply made Chinese products, we just do not know if they
function the way they say they do or if they would just work for
one day, and the next they, the frequency increases drastically.
We have no way of measuring light waves currently, so the
product needs to be from a reputable manufacturer that we can
trust. Unlike LiDAR, ultrasonic sensors are available from many
US-based reputable manufactures. They are also much cheaper
in comparison. We did not choose the infrared sensor because
we do not know the lighting conditions of the place where the
machine is going to be. If the room has too many infrared signals
from sources like sunlight, lightbulbs or computers, the infrared

sensor will experience constant interference and the result will
not be at all accurate.

At first glance, the ultrasonic sensor may not be necessary in
the system. However, it is a way that we can save on energy
consumption of the system. If there are no proximity sensors, the
Jetson Nano-controlled camera will have to continuously be
taking pictures, and the Jetson Nano will have to continuously
analyze the pictures to detect if there is anyone in front of the
machine. Compared to the microcontroller and the proximity
sensor, the Jetson Nano and camera use much more power. To
conserve power, while the proximity sensor has not detected
anyone, the Jetson Nano will be in sleep mode. Once there is
someone in front of the machine, the ultrasonic sensor will send
an interrupt signal to the microcontroller. The microcontroller
will send a message to the Jetson Nano via UART, subsequently
causing an interrupt signal to occur in the Jetson Nano, waking
it from sleep.

As stated previously, since our goal is facial recognition, we
will need to be able to capture high resolution images of the face
of a person. To achieve that goal, for our photo camera, we have
gone with the IMX219 camera module, with the resolution of
3280 x 2464. To put that into perspective, the resolution of a 4k
camera is 3840 x 2160. The horizontal length of our picture is a
bit shorter than 4k, but in exchange, our image is taller. The
reason that we have gone with a development camera module
rather than a full-blown camera is the cost. A full-blown camera
is around 20x more expensive than a comparable camera
module. The difference in cost is stemmed from the inclusion of
an onboard image preprocessor. For our application, we do not
need the image to be sharpened before being processed by the
AI, so a camera module alone is more than enough.

Lastly, let us talk about the use of a push button in the
system. The button is just the typical single push, single throw
button. This is added as a failsafe option in case someone or
something is blocking the ultrasonic sensor, preventing it from
detecting an approaching object. This also helps in case the robot
is mounted in high places and the person is too short to be
detected by the ultrasonic sensor. Whatever the case may be, all
the user has to do is to push the button to override the ultrasonic
sensor detection. After pressing the button, the Jetson Nano will
be turned on to do the AI processing sequence like usual. The
reason we use the button to override the ultrasonic sensor and
not the jetson nano is because the IMX219 camera module has
a much wider field of view than the ultrasonic sensor, so the
chance of it not being able to capture an image that does not
contain a person is low.

4) Microcontroller

The microcontroller that we are using for this project is the
MSP430G2553. The MSP430G2553 ports a 16-bit processor
with 16KB of flash memory, 2 16-bit timers with 24 GPIO lines,
3 of which are PWM capable, and it supports basic
communication protocols like UART, SPI, and I2C. Rather than
using a G2ET development kit for the MSP, we minimized the
footprint by putting the MSP430G2553 microcontroller chip on
the same PCB as the power delivery system. We do not need the
fancy features provided by the development board like easy
computer connection with the micro-USB port, nor do we need
the 8-segments LCD screen. We do not even need a reset button

4

for our current project. We only need direct access to the pins
for the peripheral control and to set up the buttons. Also, since
the interior of the robot is relatively small, putting another board
into the body would take up too much space. We believe doing
so is the right choice as the size of the microcontroller itself is
only about 1/100th of the size of the entire board.

As for the port and pin connectivity to and from the
MSP430G2553 microcontroller, here is how it works. DVCC is
the power source of the chip, so it is connected to the 3.3V rail
of the power supply. Obviously, another terminal is needed to
complete the circuit; so, we then connect the DVSS to the
ground terminal of the power supply. Because the reset pin is
active low, we must, at all time, bridge the reset pin with DVCC
via a 47k resistor to hold it high. Without hooking it up the
voltage source, the reset pin will float between high and low and
constantly reset the microcontroller. This phenomenon is similar
to a boot loop many people have experienced with the personal
computer. The push button will be configured to bit 3 of port 1
of the microcontroller. As stated in the motor section, the motor
will be hooked up to the motor driver, then the motor driver will
be linked with the microcontroller via P2.0, P2.1, and P2.3.
Finally, the buzzer will be linked to P2.4 and P2.5.

According to Texas Instruments’ datasheet, the
MSP430G2553 consumes no more than 1.4mW even under
heavy load. MSP430G2553 takes in 3.3V as the operating
voltage. Under heavy load, the input current is measured to be
roughly 400uA, which is within expectation. What more, under
low-power mode, the power consumption dropped drastically.
With low-power mode 3, the amount of current it needs dropped
to roughly 2uA, making the required power decreased to 6.6uW.
Since the MSP430G2553 does not need that much power to
operate, it can be powered very easily. Since our 3.3V rail of the
power delivery can deliver up to 5W of power, it should be more
than enough to power not just one, but multiple MSP430G2553
at once.

5) Image Processor

The image processor used in this design is ultimately chosen
to be the NVIDIA Jetson Nano. The decision behind choosing a
graphics/image processor development board in this case was
simple due to both the specifications of the Nano being far above
its competitors in the same price range and abundant support
from NVIDIA for deploying AI applications. Among the
abundant support for the Jetson platform is a face mask detection
flow that has already been fleshed out officially by NVIDIA as
an example design and the methodology can be easily found
online.

The main reason for choosing the Jetson Nano is that it has
the strongest GPU among the all the processors in the similar
price range – a 128 CUDA core NVIDIA Maxwell-series.
Essentially, since we have an artificial neural network at the
heart of our processing that consists of many simple
multiplication and addition operations needed to be done in
parallel, a CPU would not be very efficient at doing this since it
is both inherently sequential and has a low number of cores.
What a neural network needs for good performance are many
“dumb” cores since we do not care about concepts such as cache
or a complex ISA provided by CPUs since each node in the
neural network is doing just simple arithmetic operations.

Something that needs to be realized as well is that we need to
actually be able to sufficiently utilize the GPU available. In
terms of support, the Nano has a massive platform provided by
NVIDIA for CUDA core drivers, making sure we get the
maximum performance possible out of the GPU, so this is not a
problem since it is built into their deployment SDK.

Power consumption was not a major reason for choosing the
Jetson Nano, however we must still take it into account when
designing the hardware. The Jetson Nano requires a steady 5v/2a
DC power source in order to run at its peak 10W power usage
for optimal performance. This is not taking into consideration
the carrier board or attached peripherals, which may end up
taking more power. NVIDIA’s recommendation is a 5v/4a DC
source to provide a stable voltage rail with no droops below
4.75V to prevent brownouts. This is a hard requirement due to
the fact that we need to be able to run the Nano as hard as
possible since we cannot afford any performance losses in our
AI algorithm.

There are three different ways to power the board. The
micro-USB route has been seen to be very unreliable in testing
and will not be used. The 2.1mm barrel jack connector can
supply up to 5v/4a and is a possible choice, however the simplest
way to power the nano is through the 5v VDC headers (pins 2,
4) shown in Figure 38. They may take up to 2.5A per pin,
however we will not require the full 5A supply since the Nano
itself takes up 2A, and the only peripheral connected is the
Camera module which should in no way take up more than an
entire amp of power. Therefore, a loose requirement is 5V/3A
connected to pins 2, 4 on the header.

6) Power Delivery

For power delivery for this project, we are going to use an
external power brick (AC-DC converter) which converts from
120VAC to 12VDC, then, our PCB will implement 2 rails with
voltage regulators that turn the input 12VDC to 5VDC and
3.3VDC respectively in order to run motor driver,
MSP430G2553, and the Jetson Nano.

Now, let us walk through the entire circuit to see how it
operates. First, the input signal is generally in the range of
120V(rms), 60Hz AC signal that comes out from United States’
wall outlets. The input signal is connected directly to the primary
side of step-down the transformer (integrated into the power
brick). The step-down transformer that we used in this circuit
that converts from 120VAC to 12VDC. To regulate the output
voltages, we initially used the LM7805 and
NCV4274CDT33RKG linear regulators. We later found out
from our professor that the LM78XX parts are extremely
inefficient in voltage conversion. The efficiency rating of the
78XX parts is only around 50%. If we have all the energy in the
world, such low efficiency would not be a problem. However,
the world’s electrical energy is limited, so we do not have the
leisure to waste energy. The current design’s efficiency is 80%+,
which is a huge up lift from the 50% efficiency. The 12V output
from the DC power brick will be taken in by the LM25085A
regulator to be converted to 5V. The 3.3V rail runs parallel to
the 5V rail, so we will run the 12V output voltage from the
power brick into the TPS563249 regulator to convert it into
3.3V. The use of each of the output voltage is the same as
mentioned before. The only difference between the old set up

5

and the new one is that the new one is more stable and more
efficient. The efficiency number and the design of the new
circuit is taken directly from the TI’s WEBENCH power
designer tool.

7) PCB Design

The obvious step immediately after designing the multi-rail
power delivery system is to design the PCB. There are many free
and paid options that can be used to design a PCB. Due to our
inexperience and lack of expertise, we will be using Autodesk
Eagle to design our PCB. We chose Eagle because it is the
software that we have some experience with, and it is also that
the software that is widely used by our professors at the
University of Central Florida.

After designing comes the manufacturing process. There are
many PCB manufactures that we can use, from those that are
based in the US to those that are based overseas. To save on cost,
the obvious option is to go with a Chinese manufacture. Initially,
we chose PCBWay to manufacture and assemble our PCB.
However, after a 2-months delay from Lunar New Year, the
board came with manufacturing defects and many included
components were dead-on-arrival. We got the board to be
remanufactured, this time by the more reputable JLCPCB. After
the board arrived, the sent the board, alongside the components
to The Quality Manufacturing Services at Lake Mary (QMS), a
manufacture with existing partnership with UCF, to be
assembled. The board is a simple 2-layer PCB with size of
100mm x 90mm in size and with 31 unique components. Since
the component count is not high, QMS agreed to assemble the
components for us for free. An image of our PCB presented in
Figure 2.

Figure 2: PCB

B. Software Requirements

The below subsections detail our design of the software
components of the robot. For obvious reasons, our project
cannot be solely hardware-based. We need to have a seamless
combination between the hardware and software to make the
user’s experience as stress-free as possible. Aside from listing
the software components, we will also go over the purpose of
the part in the grand scheme of functionality of the system.

1) Machine Learning Model Training and Pruning

The training of our machine learning model proved to be the
most complex part out of designing the system. In order to create
an effective model, we decided to follow NVIDIA’s Transfer
Learning Toolkit process due to its popularity in the AI
community, and proven performance.

Training a machine learning model is a complex process.
Thankfully NVIDIA has standardized their transfer learning
process. The sub-sections below detail the process we went
through to train our model.

“Transfer Learning” is the method of machine learning
which uses the knowledge in an already trained model and
applies it onto a different, but related problem. The idea of
transfer learning is reusing the model developed for a certain
task as the initial model for a related task which does not have
sufficient data. Instead of starting the process by collecting data,
the users can begin with the model that “solves” a related task,
which is extremely beneficial in saving a huge amount of
training time due to the fact that it uses a previously trained and
specialized model.

Transfer learning is useful when we do not have enough data
for a new domain and there is already a pre-existing data pool
that can be reused for the new problem. The NVIDIA Transfer
Learning Tool Kit provides pre-trained models that can be re-
trained to in order to achieve any arbitrary model. Also, TLT
does not require high-level understanding in deep learning, so it
is easy to use that make our own custom model for our project.
The flow we will follow is shown in Figure 3.

Figure 3: Transfer Learning Toolkit (TLT) Flow

To quickly get up to speed on training our model, we first
had to configure our environment to perform the actual training.
Since a GPU is more or less required for training, we used a
laptop with an NVIDIA GTX 1060. To configure the Linux
environment, we used Windows 10’s Windows Subsystem for
Linux 2 (WSL 2). This second iteration of WSL allows for use
of the GPU inside the Linux subsystem. Inside this Linux
subsystem we ran the nvidia:tlt-streamanalytics docker
container for access to a standardized TLT environment.

 The model training process is as follows: First, we
download the dataset of faces with mask and without mask and
convert them into KITTI format using the data2kitti.py script
given, and then into TFRecords format for the underlying
TensorFlow API that TLT runs on top of. The TFRecords
conversion was done using the tlt-dataset-convert executable
built into the environment. We also download the pretrained
model from NGC (NVIDIA GPU Cloud). Specifically, we will
use the DetectNet_v2 with the ResNet-18 for accuracy and

6

efficiency. After that, the quantized TLT deep learning model is
deployed with DeepStream SDK to identify faces with mask or
no mask. By using NVIDIA TLT and NVIDIA DeepStream
SDK, it saves a significant amount of time in training as well as
allows us to achieve high accuracy performance in real-time.

The main step in this software flow is the actual TLT training
done inside of the Jupyter Notebook provided by NVIDIA,
inside of the TLT docker container, inside of WSL 2. Once our
labeled images are converted to TFRecords format and we have
the pre-trained DetectNet_v2 model from NGC, we can now
continue to training.

The first step in training is re-configuring the
detectnet_v2_train_resnet18_kitti.txt config file in the specs dir
which controls many parameters for the training such as paths to
files, validation split, and many others that have been pre-
configured by NVIDIA. The ones that must be reconfigured are
the image width, height, fold number (for validation split of
images), and other training parameters such as number of
epochs, batch size, etc. along with the paths to the training
TFRecords.

We set our parameters to 960x544 (the original
DetectNet_v2 model resolution), 120 epochs, and a batch size of
12. Depending on the amount of both system RAM and GPU
DRAM is available we must lower the batch size parameter. The
batch size defines how many samples we work through during
the current epoch before we update the model parameters. A
higher batch size implies better training for the model at the cost
of taking more time and more memory since we are performing
operations on a larger subset of data. In training, we found that
a batch size of 12 was the most optimal setting – the highest we
could go with acceptable training speed without running into
memory starvation.

After the parameters are set, we begin the training by using
the tlt-train executable. Our final accuracy for the unpruned
model ends up at 82% and 84% for mask or no mask inference,
respectively. This is close to NVIDIA’s calculated numbers of
~85% for each, though less likely due to a different split of
training data, less epochs, smaller batch size, etc. Had we run
training for more epochs on better hardware with larger batch
size this accuracy would likely increase, although non-
deterministically since training varies on every run.

 The next stage in the TLT flow is the pruning stage,
followed by re-training. From a high-level pruning is known as
“Data compression” technique that takes nodes in the network
that have a very small impact on the overall decision of the
output and strips them away from the model. This method helps
the model to achieve better solution, reduces the complexity of
the model as well as improving the accuracy by decreasing
overfitting the model. Also, this greatly reduces inference time
and is extremely valuable to do in our case since we will be
running on relatively weak hardware (Jetson Nano), and can use
whatever performance increases we can get within reason.
Theoretically, this technique will only reduce the size of
decision trees without increasing errors. However, in this
specific case, removing nodes from our neural network, we lose
the accuracy since some may have a ripple effect through the
network. An acceptable loss in pruning for our application is an
arbitrary 5% loss.

To actually prune the model, we run the tlt-prune with a “-
pth #” option setting that acts as a threshold value and is a
floating-point number between 0 and 1. A larger number closer
to 1 prune more of the network while a smaller number near 0
leaves more intact. It’s obvious that the higher the value is, the
more accuracy we will lose since more of the network will be
stripped away, so it ends up being a balancing act between
performance gain and accuracy loss.

Additionally, due to the fact that we will be losing accuracy
upon doing this it is necessary that we re-train the network once
pruning finishes, and that we re-evaluate the network to see if
we pruned too much. If our accuracy suffers too much (more
than the arbitrary 5% stated before), we will have to go back and
prune less, and re-train once again. Thus, next we prune the
model with a starting value of 0.4 and re-evaluate. The re-
evaluated model accuracy is shown in the figure below and is
satisfactory at ~83% for both mask and no mask. Later on, we
will deploy our model to the Jetson Nano, and if inference
performance (frames per second) is satisfactory, we are done.
However, if either accuracy or inference performance is lacking
too much, we may re-visit the pruning and modify the threshold
value to modify our tradeoff in this area.

2) Deploying Machine Learning Model

NVIDIA further provides a framework for deploying custom
models that utilize the TLT flow called Deepstream SDK. We
chose to use NVIDIA’s deployment platform due to having
good community support, and it allows us to follow their
example designs. Since we used TLT, deployment is as
straightforward as modifying the example designs.

We chose to follow the Deepstream Python example
applications for deploying our model due to familiarity with
Python in UCF’s Artificial Intelligence course. We first had to
modify the Primary GPU Inference Engine (PGIE)
configuration to point to our custom model, and set all the
relevant parameters to our model (image height, width,
confidence threshold).

Once the configuration was set, we modified the example
Python application. The GStreamer pipeline is first generated by
the NVIDIA provided code. Next, we wait inside of a loop
forever until we receive serial data from the MCU in “sleep
mode”. If the serial data received is an “S” ASCII character, we
have our start condition and begin playing the pipeline. A set
number of frames are generated by the camera (128), and at the
end of the 128 frames we record the metadata found by the AI –
we check here for people seen wearing masks or no masks.
Statistics logging then occurs with the database, and we inform
the MCU if we have seen someone without a mask. The loop
then restarts. An image of the mask recognition demo is
presented in Figure 4 below.

7

Figure 4: Real Time Mask Test

The actual internals of the Deepstream SDK uses a
GStreamer pipeline setup to transfer data between elements’
sources and sinks. These elements may perform video or audio
decoding, image transformation, inference, and many other
functions. To actually “run” the AI we need to first set up a
pipeline, which is quick to pick up since NVIDIA provides many
examples. To get any valuable data out of the AI, a probe is
inserted at the end of the onscreen display element. Inside of this
probe we extract valuable metadata from the buffer object
including frame number, number of each element seen in the
image (masks/no-masks), and interact with our database. The
deployment flow is shown in Figure 5.

Figure 5: Jetson Nano SW Flow

3) Database Communication

Our database system is based on the LAMP (Linux, Apache,
MySQL, Python) stack. Linux, MySQL, Python are such
powerful platform that contributes essential capabilities to the
stack as well as providing the sufficient requirements for
database system for our mask detection task.

Linux (The operating system): Serve as the first layer for this
stack model. Linux is free and open-source operating system,
which provide flexibilities and configuration options to run our
server.

Apache (The web server): Since we are planning to host the
database locally, we do not use the Apache to deliver the website
on the internet.

MySQL (The database): MySQL is known as open-source
relational database management system for storing information.
This will be the second layer for our model, that will store the
data, and deliver the information as requested.

Python (The programming language): We use Python as our
primary scripting language to create dynamic database server.

This database system will have three main layers as
mentioned above, Linux sets the foundation for the stack model,
following by MySQL and Python. Python communicates with
MySQL for fetching or storing data referenced in the code. We
will manage database directly using SQL commands instead of
using a web server. This stack model is efficient enough to
handle the changing of data depends on date, time and user IDs.

The database will automatically generate a unique number
each time a person comes through the mask detection system
with a unique identifier to ensure the data recorded is unique.
After a primary key is created (null values will be rejected), the
new data associated with the key guarantees two persons will
never have same value and allows us to parse data within the
table quickly.

After 128 frames captured the person coming toward the
camera within distance, every person in the video will be labeled
as “Mask” or “No Mask”, which will be recorded in the
metadata file. This data file is imported to MySQL database with
“PersonID” will be the primary key to distinguish with the
preexisting data. “PersonID” is “AUTO_INCREMENT”, which
allows us to generate unique number automatically when a new
data record is added into the table, following by “Mask”, will be
stored in Boolean type: Mask: 1 and No-mask: 0. To store date
and time information, we use SQL datetime type in order to
define specific time a person has experience mask detection
system.

IV. TESTING AND EVALUATION

A. Hardware Testing

With some exceptions, the majority of the hardware testing
is accomplished by plugging in the PCB and measure the voltage
and current at each of the lead to ensure the output is as expected.
The testing is presented in the Table 1.

8

B. Software Testing

The testing for the Jetson Nano is shown in the tables below.
The MSP430 software is collaterally tested in the hardware
section.

V. CONCLUSION

In conclusion, Coronavirus Prevention System is AI based,
face mask detection, that uses streaming data from the camera,
combined with machine learning techniques to detect a person
without a mask. The team was able to meet all specifications that
are required for this project. Throughout testing and integration,
we noticed that sometimes the door is open slower than usual,
but this would be an easy fix.

Overall, the team learned many valuable skills that not only
for individual growth but also the idea that everyone’s
contribution can lead to something that is socially beneficial,
during the current pandemic COVID-19. We believe this project
would be a great way to demonstrate our skills and knowledge
that we have learned from coursework at UCF including
hardware design and software design.

ACKNOWLEDGMENT

We would like to give thanks to Dr. Samuel Richie for
overseeing our project from the very beginning to the end. We
received many valuable advices from him, ranging from
choosing our development platforms to manufacturing our PCB.
We would like to thank the Quality Manufacturing Services at
Lake Mary for helping us assembling the PCB components free-
of-charge.

REFERENCES

[1] “Cloth Face Cover Guidance.” Centers for Disease Control and
Prevention, Centers for Disease Control and Prevention,
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-
face-cover-guidance.html

[2] Key, J. (2021, January 21). Half of U.S. adults don't wear masks when in
close contact with NON-HOUSEHOLD MEMBERS. Retrieved from
https://dornsife.usc.edu/news/stories/3388/understanding-coronavirus-
in-america-mask-use-among-us-adults/

[3] “About COVID-19.” Centers for Disease Control and Prevention,
Centers for Disease Control and Prevention,
www.cdc.gov/coronavirus/2019-ncov/cdcresponse/about-COVID-
19.html.

[4] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
2. Oxford: Clarendon, 1892, pp.68–73.

[5] Analog Devices, Inc. “Understanding How a Voltage Regulator Works.”
Understanding How a Voltage Regulator Works | Analog Devices, 2009,
www.analog.com/en/technical-articles/how-voltage-regulator-
works.html.

[6] Bhargava, Hansa D. “Coronavirus History: How Did Coronavirus Start?”
WebMD, WebMD, 15 Apr. 2020, www.webmd.com/lung/coronavirus-
history

[7] Geitgey, Adam. “Build a Hardware-Based Face Recognition System for
$150 with the Nvidia Jetson Nano and Python.” Medium, Medium, 25
June 2019, medium.com/@ageitgey/build-a-hardware-based-face-
recognition-system-for-150-with-the-nvidia-jetson-nano-and-python-
a25cb8c891fd/

[8] Han, Song, et al. “Learning Both Weights and Connections for Efficient
Neural Networks.” ArXiv.org, 30 Oct. 2015, arxiv.org/abs/1506.02626.

[9] “JetPack SDK.” NVIDIA Developer, 21 Oct. 2020,
developer.nvidia.com/embedded/jetpack

[10] “Jetson Nano Developer Kit.” NVIDIA Developer, 9 Oct. 2020,
developer.nvidia.com/embedded/jetson-nano-developer-kit

[11] Kulkarni, Amey, et al. “Implementing a Real-Time, AI-Based, Face Mask
Detector Application for COVID-19.” NVIDIA Developer Blog, 13 Oct.
2020, developer.nvidia.com/blog/implementing-a-real-time-ai-based-
face-mask-detector-application-for-covid-19/

[12] “NVIDIA DeepStream SDK.” NVIDIA Developer, 13 Nov. 2020,
developer.nvidia.com/deepstream-sdk

[13] “NVIDIA Transfer Learning Toolkit.” NVIDIA Developer, 13 Nov. 2020,
developer.nvidia.com/transfer-learning-toolkit

[14] Pachev, Sasha. “Understanding MySQL Internals.” O'Reilly Online
Learning, O'Reilly Media, Inc.,
www.oreilly.com/library/view/understanding-mysql-
internals/0596009577/ch01.html

https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover-guidance.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover-guidance.html
https://dornsife.usc.edu/news/stories/3388/understanding-coronavirus-in-america-mask-use-among-us-adults/
https://dornsife.usc.edu/news/stories/3388/understanding-coronavirus-in-america-mask-use-among-us-adults/
http://www.cdc.gov/coronavirus/2019-ncov/cdcresponse/about-COVID-19.html
http://www.cdc.gov/coronavirus/2019-ncov/cdcresponse/about-COVID-19.html
http://www.analog.com/en/technical-articles/how-voltage-regulator-works.html
http://www.analog.com/en/technical-articles/how-voltage-regulator-works.html
mailto:medium.com/@ageitgey/build-a-hardware-based-face-recognition-system-for-150-with-the-nvidia-jetson-nano-and-python-a25cb8c891fd/
mailto:medium.com/@ageitgey/build-a-hardware-based-face-recognition-system-for-150-with-the-nvidia-jetson-nano-and-python-a25cb8c891fd/
mailto:medium.com/@ageitgey/build-a-hardware-based-face-recognition-system-for-150-with-the-nvidia-jetson-nano-and-python-a25cb8c891fd/
http://www.oreilly.com/library/view/understanding-mysql-internals/0596009577/ch01.html
http://www.oreilly.com/library/view/understanding-mysql-internals/0596009577/ch01.html

9

TEAM MEMBERS

Emanuel Cicortas is a Computer Engineering student
whose interest is in VLSI. He will be working on the
Jetson Nano side to help design the mask detection
software, train the AI model, and deploy to the Jetson. He
has been interning for Lockheed Martin in FPGA design
for 2 years and will begin work as an ASIC Verification
Engineer for NVIDIA after graduation.

Dat Nguyen is a Computer Engineering student who

specializes in microcontrollers. For this project, he will be
in charge of programming the microcontroller as well as
testing the peripherals. After graduation, he will continue
his academic endeavor at UCF.

Ha Tran is the only Electrical Engineering student in our
group, and his primary interest is in Power Systems. Ha has
been working as an intern at Jacobs for 1.5 years, and he
has experience in the renovation of electrical engineering
design services for a variety of projects encompassing
building power, power distribution, lighting, controls, etc.
In this project, he specializes in signal processing, so he is
in charge of designing and testing the power delivery of our
system. Upon graduating, he will transition from an intern
to full time employee at Jacobs as an Electrical Designer.

Phuong Anh Vu is a Computer Engineering student who
specializes in software design. In this project, she will be
in charge of building database server and helps with
software design including facial recognition and machine
learning algorithms. She plans to pursue working career in
computer engineering profession in short-term future and
gain a Master in Machine Learning in long-term future

